Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Greens function approach for transport calculation in a In0.53Ga0.47As/In0.52Al0.48As modulation-doped heterostructure

Identifieur interne : 00C229 ( Main/Repository ); précédent : 00C228; suivant : 00C230

Greens function approach for transport calculation in a In0.53Ga0.47As/In0.52Al0.48As modulation-doped heterostructure

Auteurs : RBID : Pascal:03-0351608

Descripteurs français

English descriptors

Abstract

The gate voltage dependence of the low-field electron mobility has been investigated in a In0.53Ga0.47As/In0.52Al0.48As modulation-doped heterostructure using a real-time Greens function formalism. All scattering mechanisms relevant for this material system have been incorporated in the theoretical model, including alloy disorder scattering, Coulomb scattering from the ionized impurities in the buffer layer, acoustic phonon, and piezoelectric scattering. The simulation results for the subband structure suggest occupation of two subbands at VG=0V. Good agreement is observed between the simulated sheet electron densities and the experimentally extracted ones from Hall and Shubnikov-de Haas oscillatory magnetoresistance measurements. The mobility results for the structure investigated suggest that alloy-disorder scattering is the dominant mobility degradation mechanism. © 2003 American Vacuum Society.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0351608

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Greens function approach for transport calculation in a In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As modulation-doped heterostructure</title>
<author>
<name sortKey="Vasileska, D" uniqKey="Vasileska D">D. Vasileska</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Prasad, C" uniqKey="Prasad C">C. Prasad</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wieder, H H" uniqKey="Wieder H">H. H. Wieder</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ferry, D K" uniqKey="Ferry D">D. K. Ferry</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Arizona</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, Arizona State University, Tempe</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0351608</idno>
<date when="2003-07">2003-07</date>
<idno type="stanalyst">PASCAL 03-0351608 AIP</idno>
<idno type="RBID">Pascal:03-0351608</idno>
<idno type="wicri:Area/Main/Corpus">00CC96</idno>
<idno type="wicri:Area/Main/Repository">00C229</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1071-1023</idno>
<title level="j" type="abbreviated">J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</title>
<title level="j" type="main">Journal of vacuum science and technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Electron mobility</term>
<term>Electron-phonon interactions</term>
<term>Gallium arsenides</term>
<term>Green's function methods</term>
<term>Hall mobility</term>
<term>III-V semiconductors</term>
<term>Impurity scattering</term>
<term>Indium compounds</term>
<term>Semiconductor quantum wells</term>
<term>Shubnikov-de Haas effect</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7363H</term>
<term>7321F</term>
<term>7350D</term>
<term>7350B</term>
<term>7350J</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Aluminium composé</term>
<term>Puits quantique semiconducteur</term>
<term>Semiconducteur III-V</term>
<term>Méthode fonction Green</term>
<term>Diffusion impureté</term>
<term>Interaction électron phonon</term>
<term>Mobilité électron</term>
<term>Mobilité Hall</term>
<term>Effet Shubnikov de Haas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The gate voltage dependence of the low-field electron mobility has been investigated in a In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As modulation-doped heterostructure using a real-time Greens function formalism. All scattering mechanisms relevant for this material system have been incorporated in the theoretical model, including alloy disorder scattering, Coulomb scattering from the ionized impurities in the buffer layer, acoustic phonon, and piezoelectric scattering. The simulation results for the subband structure suggest occupation of two subbands at V
<sub>G</sub>
=0V. Good agreement is observed between the simulated sheet electron densities and the experimentally extracted ones from Hall and Shubnikov-de Haas oscillatory magnetoresistance measurements. The mobility results for the structure investigated suggest that alloy-disorder scattering is the dominant mobility degradation mechanism. © 2003 American Vacuum Society.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-1023</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Greens function approach for transport calculation in a In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As modulation-doped heterostructure</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VASILESKA (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PRASAD (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WIEDER (H. H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FERRY (D. K.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1903-1907</s1>
</fA20>
<fA21>
<s1>2003-07</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0351608</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of vacuum science and technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The gate voltage dependence of the low-field electron mobility has been investigated in a In
<sub>0.53</sub>
Ga
<sub>0.47</sub>
As/In
<sub>0.52</sub>
Al
<sub>0.48</sub>
As modulation-doped heterostructure using a real-time Greens function formalism. All scattering mechanisms relevant for this material system have been incorporated in the theoretical model, including alloy disorder scattering, Coulomb scattering from the ionized impurities in the buffer layer, acoustic phonon, and piezoelectric scattering. The simulation results for the subband structure suggest occupation of two subbands at V
<sub>G</sub>
=0V. Good agreement is observed between the simulated sheet electron densities and the experimentally extracted ones from Hall and Shubnikov-de Haas oscillatory magnetoresistance measurements. The mobility results for the structure investigated suggest that alloy-disorder scattering is the dominant mobility degradation mechanism. © 2003 American Vacuum Society.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C63H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C50D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C50B</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C50J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7363H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7350D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7350B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7350J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode fonction Green</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Green's function methods</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Diffusion impureté</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Impurity scattering</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Interaction électron phonon</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electron-phonon interactions</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Mobilité électron</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Electron mobility</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Hall mobility</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Effet Shubnikov de Haas</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Shubnikov-de Haas effect</s0>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0332M000422</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0351608
   |texte=   Greens function approach for transport calculation in a In0.53Ga0.47As/In0.52Al0.48As modulation-doped heterostructure
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024